Lesson 12 Transportation Model Solutions

\#1: Solve the linear programming problem using the transportation method LP.
Minimize $8 X_{1,1}+2 X_{1,2}+5 X_{1,3}+2 X_{2,1}+X_{2,2}+3 X_{2,3}+7 X_{3,1}+2 X_{3,2}+6 X_{3,3}$
Subject to
$X_{1,1}+X_{1,2}+X_{1,3}=90$
$X_{2,1}+X_{2,2}+X_{2,3}=105$
$X_{3,1}+X_{3,2}+X_{3,3}=105$
$X_{1,1}+X_{2,1}+X_{3,1}=150$
$X_{1,2}+X_{2,2}+X_{3,2}=75$
$X_{1,3}+X_{2,3}+X 3=75$
a. Complete the table below showing the optimal transportation plan.

	Receiver Demand			
Supplier	1	2	3	Supply
1		15	75	$\mathbf{9 0}$
2	105			105
3	45	60		105
Demand	150	75	75	

b. What is the minimum cost?

1,050 units of cost
\#2: A manufacturer wants to open a third warehouse that will supply three retail stores. The new warehouse will supply 500 units of backyard play-sets per week. Two locations are being considered: N1 and N2. Transportation costs for N1 to stores A, B, and C are \$6, \$8, and \$7 per unit, respectively. Transportation costs for N 2 to stores A, B, and C are $\$ 10, \$ 6$, and $\$ 4$ per unit respectively. The existing transportation system includes two warehouses: 1 and 2. The costs for the existing transportation system are shown in the following table.

	Store A	Store B	Store C	Capacity	
Whse 1	8	3	7	500	
Whse 2	5	10	9	400	
Demand	400	600	350		

Answer the following questions.
a. Complete the table below showing the optimal transportation plan for location N1. Identify the minimum cost for this location.

	Receiver Demand				
	Supplier	Store A	Store B	Store C	Dummy
Whse 1		500			500
Whse 2	400				400
N1		100	350	50	500
Demand	400	600	350	50	

Total Cost

\$6,750.00
b. Complete the table below showing the optimal transportation plan for location N2. Identify the minimum cost for this location.

	Receiver Demand				
Supplier	Store A	Store B	Store C	Dummy	Supply
Whse 1		500			500
Whse 2	400				400
N2		100	350	50	500
Demand	400	600	350	50	

Total Cost

\$5,500.00
c. Which location should the manufacturer select for the new transportation system?

Location N2

\#3: A large company is which has 3 manufacturing locations, is contemplating construction of a new manufacturing facility which will supply three warehouses. The two leading locations are Toledo and Cincinnati. The new factory would have a supply capacity of 160 units per week. Transportation costs for Toledo to warehouses A, B, and C are \$18, \$8, and \$13 per unit, respectively. Transportation costs for Cincinnati to warehouses A, B, and C are $\$ 7, \$ 17$, and $\$ 13$ per unit, respectively. Transportation costs for the existing system are shown in the following table.

	Whse A	Whse B	Whse C	Capacity	
Mfg 1	10	14	10	210	
Mfg 2	12	17	20	140	
Mfg 3	11	11	12	150	
Demand	220	220	220		

Answer the following questions.
a. Complete the table below showing the optimal transportation plan for location Toledo. Identify the minimum cost for this location.

	Receiver Demand			
Supplier	Whse A	Whse B	Whse C	Supply
Mfg 1			210	210
Mfg 2	140			140
Mfg 3	80	60	10	150
Toledo		160		160
Demand	220	220	220	

Total Cost

\$6,720.00
b. Complete the table below showing the optimal transportation plan for location Cincinnati. Identify the minimum cost for this location.

	Receiver Demand		
Supplier	Whse A	Whse B	Whse C
Mfg 1			210
Mfg 2	60	80	
Mfg 3		140	10
Cincinnati	160		140
Demand	220	220	220

Total Cost
 \$6,960.00

c. Which location should the manufacturer select for the new transportation system?

Toledo

\#4: A retailer which currently has two stores: A and B. They also have 3 warehouses and are considering opening a new store. Three locations in California are currently under consideration: South Coast Plaza (SCP), Fashion Island (FI) and Laguna Hills (LH). Each of the projected locations has a demand potential of 300 units. The shipping costs per unit from the current warehouses to each of these locations are shown in the following table.

	SCP	FI	LH
Whse 1	4	7	5
Whse 2	11	6	5
Whse 3	5	5	6

Transportation costs for the existing system are shown in the following table.

	Store A	Store B	Capacity	
Whse 1	15	9	660	
Whse 2	10	7	340	
Whse 3	14	18	200	
Demand	400	500		

Answer the following questions.
d. Complete the table below showing the optimal transportation plan for South Coast Plaza (SCP). Identify the minimum cost for this location.

	Receiver Demand			
Supplier	Store A	Store B	SCP	Supply
Whse 1		500	160	660
Whse 2	340			340
Whse 3	60		140	200
Demand	400	500	300	

Total Cost
 \$10,080.00

e. Complete the table below showing the optimal transportation plan for location Fashion Island (FI). Identify the minimum cost for this location.

	Receiver Demand			
Supplier	Store A	Store B	FI	Supply
Whse 1	60	500	100	660
Whse 2	340			340
Whse 3			200	200
Demand	400	500	300	

Total Cost
 \$10,500.00

f. Complete the table below showing the optimal transportation plan for location Laguna Hills. Identify the minimum cost for this location.

	Receiver Demand			
Supplier	Store A	Store B	LH	Supply
Whse 1		500	160	660
Whse 2	340			340
Whse 3	60		140	200
Demand	400	500	300	

Total Cost
$\$ 10,380.00$

g. Which location should the manufacturer select for the new transportation system?

[^0]
[^0]: South Coast Plaza

