
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The transportation cost to ship 1 unit of product between Factory 1 and Warehouse A is 4.

	Summary Matrix					
The three previous tables can be summarized in one matrix as follows:						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	1	100	
2	12	3	8	8	200	Total
3	8	10	16	5	150	Supply
Demand	80	90	120	160		450
				emand	450	
						12.5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12-5

然名多	The LP Formulation					
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	1	100	
2	12	3	8		200	Total
3	8	10	16	5	150	Supply
Demand	80	90	120	160		450
			Total Demand		450	
let $x_{i, j}$ be the quantity shipped from factory i to warehouse j minimize$\begin{gathered} 4 \mathrm{x}_{1, \mathrm{~A}}+7 \mathrm{x}_{1, \mathrm{~B}}+7 \mathrm{x}_{1, \mathrm{C}}+1 \mathrm{x}_{1, \mathrm{D}^{+}} \\ 12 \mathrm{x}_{2, \mathrm{~A}}+3 \mathrm{x}_{2, \mathrm{~B}}+8 \mathrm{x}_{2, \mathrm{C}}+8 \mathrm{x}_{2, \mathrm{D}}^{+} \\ 8 \mathrm{x}_{3, \mathrm{~A}}+10 \mathrm{x}_{3, \mathrm{~B}}+16 \mathrm{x}_{3, \mathrm{C}}+5 \mathrm{x}_{3, \mathrm{D}} \end{gathered}$						
12.7						

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	The LP Formulation	
Supply Constraints（rows）		
subject to		$\mathrm{x}_{1, \mathrm{~A}}+\mathrm{x}_{1, \mathrm{~B}}+\mathrm{x}_{1, \mathrm{C}}+\mathrm{x}_{1, \mathrm{D}}=100$
		$\mathrm{x}_{2, \mathrm{~A}}+\mathrm{x}_{2, \mathrm{~B}}+\mathrm{x}_{2, \mathrm{C}}+\mathrm{x}_{2, \mathrm{D}}=200$
		$\mathrm{x}_{3, \mathrm{~A}}+\mathrm{x}_{3, \mathrm{~B}}+\mathrm{x}_{3, \mathrm{C}}+\mathrm{x}_{3, \mathrm{D}}=150$
．Demand Constraints（columns）		
	subject to	$\mathrm{x}_{1, \mathrm{~A}}+\mathrm{x}_{2, \mathrm{~A}}+\mathrm{X}_{3, \mathrm{~A}}=80$
		$\mathrm{x}_{1, \mathrm{~B}}+\mathrm{x}_{2, \mathrm{~B}}+\mathrm{x}_{3, \mathrm{~B}}=90$
		$\mathrm{x}_{1, \mathrm{C}}+\mathrm{x}_{2, \mathrm{C}}+\mathrm{x}_{3, \mathrm{C}}=120$
		$\mathrm{x}_{1, \mathrm{D}}+\mathrm{x}_{2, \mathrm{D}}+\mathrm{x}_{3, \mathrm{D}}=160$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

In this case the ability of the demand (receiving) locations is $\mathbf{2 0}$ more than the supply locations.
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Note: No cost is entered for the Dummy location. Now, the problem can be solved using the Linear Programming solution for the Transportation Problem as shown on the next slide.

A heuristic (intuitive) argument can be made for the solution to this
problem. It follows the steps below:
. Identify the cell with the lowest cost
. Allocate as many units as possible to that cell and cross
out the row or column (or both) that is exhausted by this
assignment
. Find the cell with the next lowest cost from among the
feasible cells
. Repeat the second and third steps until all units have
been allocated

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

露	A Heuristic Solution					
. Allocate as many units as possible to that cell						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	1001	100	
2	12	3	8	8	200	Total
3	8	10	16	5	150	Supply
Demand	80	90	120	160		450
				mand	450	
						12.24

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8	A Heuristic Solution					
. And cross out the row or column (or both) that is exhausted by this assignment						
Factory	Warehouse					
	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	3	8	8	200	Total
3	8	10	16	5	150	Supply
Demand	80	90	120	160		450
				emand	450	
12-25						

	A Heuristic Solution					
. Find the cell with the next lowest cost from among the feasible cells						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	,	10011	100	
2	12	3	8	8	200	Total
3	8	10	16	5	150	Supply
Demand	80	90	120	160		450
				emand	450	
						12-26

	A Heuristic Solution					
. Allocate as many units as possible to that cell						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	8	8	200	Total
3	8	10	16	5	150	Supply
Demand	80	90	120	160		450
				emand	450	
12.27						

煖號	A Heuristic Solution					
. And cross out the row or column (or both) that is exhausted by this assignment						
Factory	Warehouse					
	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	8	8	200	Total
3	8	10	16	5	150	Supply
Demand	80	90	120	160		450
			Total	mand	450	
12.28						

	A Heuristic Solution					
. Find the cell with the next lowest cost from among the feasible cells						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	8	8	200	Total
3	8	10	16	5	150	Supply
Demand	80	90	120	160		450
				emand	450	
						12-29

	A Heuristic Solution					
. Allocate as many units as possible to that cell						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	8	8	200	Total
3	8	10	16	6015	150	Supply
Demand	80	90	120	160		450
				emand	450	
12.30						

	A Heuristic Solution					
. And cross out the row or column (or both) that is exhausted by this assignment						
Factory	Warehouse					
	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	8	8	200	Total
3	8	10	16	6015	150	Supply
Demand	80	90	120	160		450
				mand	450	
12-31						

	A Heuristic Solution					
. Find the cell with the next lowest cost from among the feasible cells ... In this case there is a tie ... choose one arbitrarily.						
Factory	Warehouse					
	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	9013	8	8	200	Total
3	8	10	16	6015	150	Supply
Demand	80	90	120	160		450
				emand	450	
12. 32						

	A Heuristic Solution					
. Allocate as many units as possible to that cell						
Factory	Warehouse					
	A	B	C	D	Supply	
1	4	7	7	1001	100	
2	12	9013	8	8	200	Total
3	8018	10	16	6015	150	Supply
Demand	80	90	120	160		450
				emand	450	
12.33						

	A Heuristic Solution					
. And cross out the row or column (or both) that is exhausted by this assignment						
Factory	Warehouse					
	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	8	8	200	Total
3	8018	10	16	6015	150	Supply
Demand	80	90	120	160		450
				mand	450	
12.34						

	A Heuristic Solution					
. Find the cell with the next lowest cost from among the feasible cells						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	8	8	200	Total
3	8018	10	16	6015	150	Supply
Demand	80	90	120	160		450
				emand	450	
						12-35

	A Heuristic Solution					
- Allocate as many units as possible to that cell						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	1108	8	200	Total
3	8018	10	16	6015	150	Supply
Demand	80	90	120	160		450
				emand	450	
12.36						

8	A Heuristic Solution					
. And cross out the row or column (or both) that is exhausted by this assignment						
Factory	Warehouse					
	A	B	C	D	Supply	
1	4	7	7	1001	100	
2	12	9013	11018	8	200	Total
3	8018	10	16	6015	150	Supply
Demand	80	90	120	160		450
				mand	450	
$12 \cdot 37$						

	A Heuristic Solution					
. Find the cell with the next lowest cost from among the feasible cells						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	90/3	11018	8	200	Total
3	8018	10	16	6015	150	Supply
Demand	80	90	120	160		450
				emand	450	
						12-38

	A Heuristic Solution					
. Allocate as many units as possible to that cell						
	Warehouse					
Factory	A	B	C	D	Supply	
1	4	7	7	10011	100	
2	12	9013	11018	8	200	Total
3	8018	10	10116	6015	150	Supply
Demand	80	90	120	160		450
				emand	450	
12-39						

	A Heuristic Solution					
. And cross out the row or column (or both) that is exhausted by this assignment ... The distribution cost is $80 * 8+90 * 3+110 * 8+10 * 16+100 * 1+60 * 5=2,350$ per unit						
Warehouse						
Factory	A	B	C	D	Supply	
1	4	7	7	1001	100	
2	12	9013	11018	8	200	Total
3	8018	10	10116	6015	150	Supply
Demand	80	90	120	160		450
				emand	450	
12.40						

